
SENIOR DESIGN FOUR PHASES

Dr. Kamal Sarkar

University of Texas—Rio Grande Valley

November 11, 2016

SENIOR DESIGN: THE BRIDGEBETWEEN THE PROFESSION & EDUCATORS

FOUR PHASES OF DESIGN

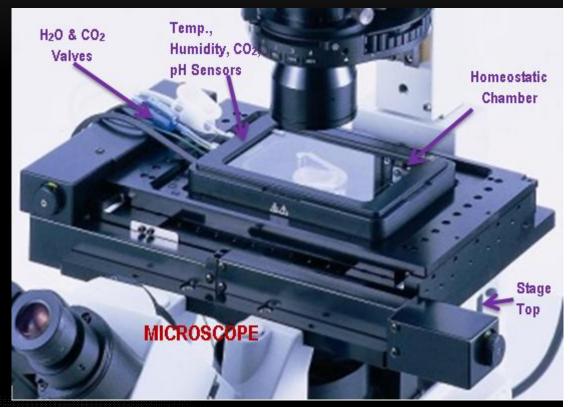
- Problem Formulation
- Concept Development
- Design Embodiment
- Design Validation

PHASE THREE: DESIGN EMBODIMENT

- Engineering Analyses
- DoX
- BoM
- Engineering Economics
- DFMEA

HOMEOSTATIC ENVIRONMENT CHAMBER

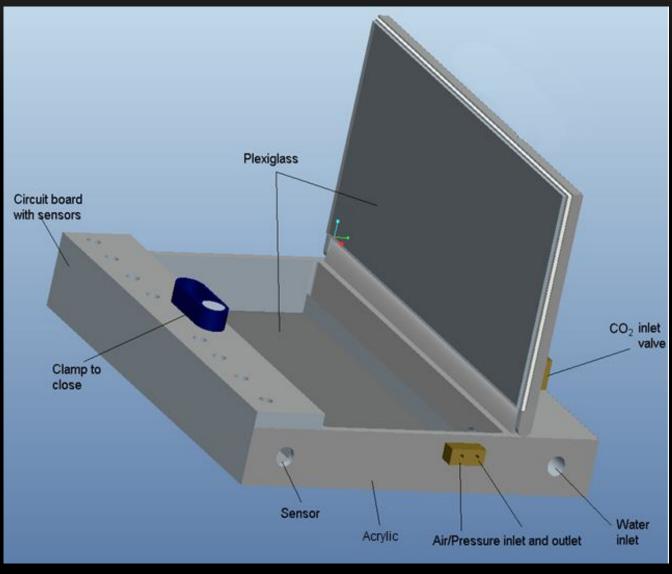
Essential Conditions:


Formulation of Parameters

• CO_2 : 5% ± 0.1%

• pH: 7.4% ± 0.04%

• Temperature: 37°C ± 2°C

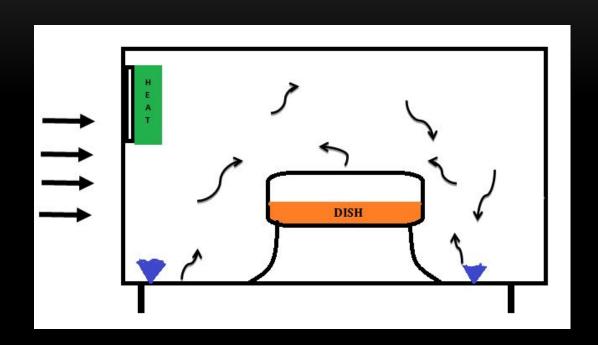

• Humidity: 95% ± 0.01%

Homeostatic Environment Chamber Placed on Stage Top of Microscope

Source: DSS Imagetech

DRAWINGS

208mm x 110mm x 25mm


ANALYSIS

Topics	Subcomponent	Parameter
Heat Transfer	Heater	Temperature
Measurement System	Sensors and Controllers	Measurement of Parameters
Thermodynamics	Humidity Sensor	Relative Humidity
Chemistry	Chemically Balance	pH Scale CO ₂ Concentration
Materials Science	Chamber	Acrylic
	Gasket	Urethane Adhesive
Electrical Circuit	Connecting Sensors, Controllers & Heating Element	Circuit

HEAT TRANSFER

Assumptions:

- Steady-State
- One-Dimension
- No Heat Generation
- Neglect Radiation

HEAT TRANSFER CALCULATIONS

Heat Equation:
$$\frac{d}{dx} \left(k \frac{dT}{dx} \right) = 0$$

Boundary Conditions:
$$T(0) = T_{S,1} \& T(L) = T_{S,2}$$

Temperature Distribution:
$$T(x) = (T_{s,2} - T_{s,1})(\frac{x}{L}) + T_{s,2}$$

Thermal Resistance for Convection:
$$R_{t,conv} = \frac{(T_S - T_\infty)}{q} = \frac{1}{hA}$$
 $q''(\frac{W}{m^2}) = \text{Heat Flux}$ $h''(\frac{W}{m^2K}) = \text{Heat Transfer Coefficient}$

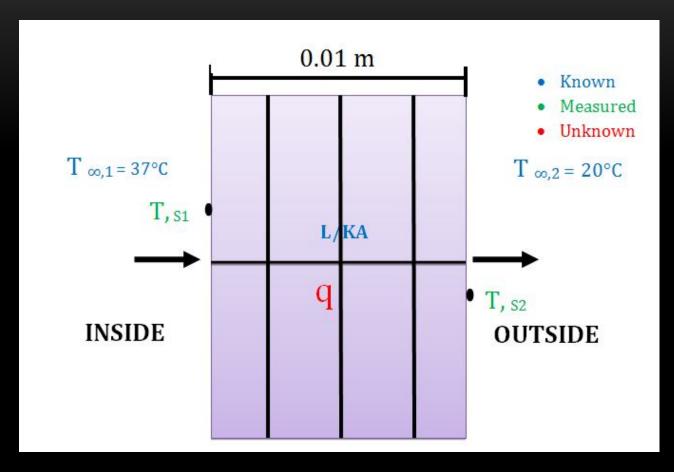
$$k\left(\frac{W}{mK}\right)$$
 = Thermal Conductivity

$$T_s$$
 (°C) = Surface Temp.

$$T_{\infty}$$
 (°C) = Ambient Temp.

$$A(m^2) = Area$$

$$q''(\frac{W}{m^2}) = \text{Heat Flux}$$

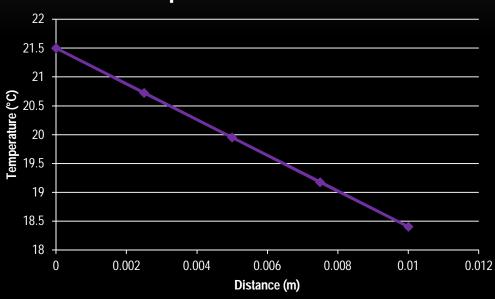

h
$$\left(\frac{W}{m^2K}\right)$$
 = Heat Transfer Coefficien


Thermal Resistance for Conduction:
$$R_{t,cond} = \frac{(T_{S,1} - T_{S,2})}{q_x} = \frac{L}{kA}$$

Conduction Heat Transfer Rate:
$$q_x = -kA \frac{dT}{dx} = \frac{kA}{L} (T_{S,1} - T_{S,2})$$

Heat Flux:
$$q''_x = \frac{q''_x}{A} = \frac{k}{L} (T_{S,1} - T_{S,2})$$

HEAT TRANSFER



Assume:

$$h_1 = 4 \frac{W}{m^2 K}$$

$$h_2 = 10 \frac{W}{m^2 K}$$

Temperature Distribution

Temperature Distribution:
$$T(x) = (T_{s,2} - T_{s,1})(x/L) + T_{s,1}$$

$$T_{S,1} = 21.5$$
°C

$$T_{S,2} = 18.4$$
°C

$$L = 0.01 \text{ m}$$